RRH based massive MIMO with "on the Fly" pilot contamination control
نویسندگان
چکیده
Dense large-scale antenna deployments are one of the most promising technologies for delivering very large throughputs per unit area in the downlink (DL) of cellular networks. We consider such a dense deployment involving a distributed system formed by multi-antenna remote radio head (RRH) units connected to the same fronthaul serving a geographical area. Knowledge of the DL channel between each active user and its nearby RRH antennas is most efficiently obtained at the RRHs via reciprocity based training, that is, by estimating a user’s channel using uplink (UL) pilots transmitted by the user, and exploiting the UL/DL channel reciprocity. We consider aggressive pilot reuse across an RRH system, whereby a single pilot dimension is simultaneously assigned to multiple active users. We introduce a novel coded pilot approach, which allows each RRH unit to detect pilot collisions, i.e., when more than a single user in its proximity uses the same pilot dimensions. Thanks to the proposed coded pilot approach, pilot contamination can be substantially avoided. As shown, such strategy can yield densification benefits in the form of increased multiplexing gain per UL pilot dimension with respect to conventional reuse schemes and some recent approaches assigning pseudorandom pilot vectors to the active users.
منابع مشابه
Review of the Pilot Contamination Problem for Massive Mimo and Possible Solution
With the increasing demands of data communication speed for different type of data transmission, many revolutions occur with time in wireless communication system. The use of MIMO for wireless data transmission has proven itself for enhancing the capacity of data transmission. The mobile network based on the cell structure also uses the MIMO techniques. Further research in the field of massive ...
متن کاملDesign of Orthogonal Uplink Pilot Sequences for TDD Massive MIMO under Pilot Contamination
—Massive MIMO has been acknowledged as a promising technology to counter the demand for higher data capacity for wireless networks in 2020 and beyond. However, each Base Station (BS) requires good enough knowledge of Channel State Information (CSI) on both the uplink and the downlink as massive MIMO relies on spatial multiplexing. In Time Division Duplex (TDD) massive MIMO systems, this CSI is...
متن کاملFog Massive MIMO: A User-Centric Seamless Hot-Spot Architecture
The decoupling of data and control planes, as proposed for 5G networks, will enable the efficient implementation of multitier networks where user equipment (UE) nodes obtain coverage and connectivity through the top-tier macro-cells, and, at the same time, achieve high-throughput low-latency communication through lower tiers in the hierarchy. This paper considers a new architecture for such low...
متن کاملLocation-Aided Pilot Decontamination for Massive MIMO Systems
One of the key limitation of massive MIMO systems is pilot contamination, which is defined as the interference during uplink channel estimation due to re-use of the same pilots in surrounding cells. In this paper, we propose a location-based approach to the pilot contamination problem for uplink MIMO systems. Our approach makes use of the approximate locations of mobile devices to provide good ...
متن کاملA Downlink Max-SINR Precoding for Massive MIMO System
To acquire the maximal array gain and mitigate the impact of pilot contamination, the downlink precoding algorithm on Max-SINR criterion was investigated and improved for Massive MIMO system. The objective function assured to maximize the utilization rate of the transmission power under the condition that SINR is not lower than the desired threshold. The Lagrangian function was deduced accordin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016